2020-02-18
Реферат: Корреляционные моменты. Коэффициент корреляции ...

Числа и факты. Формула математического ожидания

В этой статье мы рассмотрим такой важный для трейдера показатель как соотношение риск прибыль и математическое ожидание. Мы расскажем, почему вопреки распространенному мнению ключ к успеху это не только прогнозирование будущего направления движения рынка.

Сколько раз прибыль, полученную в результате выигрышной серии сделок, вы теряли всего в нескольких убыточных сделках. Вы позволяли убыточным сделкам расти устанавливая очень большие стоп лоссы (или еще хуже, обходились без них), надеясь, что рынок развернется, но в то же время когда вы открывали сделку и она шла в прибыльном направлении всего несколько пунктов вы ее сразу закрывали только для того чтобы получить небольшую прибыль.

Если вы так делали, то вы не одиноки, это является одной из главных проблем многих участников рынка.

Трейдеры часто зацикливаются на стратегии быстрого выхода и никогда не позволяют своим прибыльным сделкам расти, что отрицательно сказывается не только на балансе счета, но и на психологическом состоянии трейдера. Реальность такова, что у людей есть естественная склонность хотеть всегда быть правым, так как это вызывает у нас чувство удовлетворения. Нас научили, что ошибаться плохо, поэтому мы стараемся всеми силами избегать потерь, хотя это не правильно. Трейдер должен рассматривать свою торговлю с точки зрения вероятности, которая поможет трейдеру в долгосрочной перспективе получать прибыль.

Риск и прибыль

Соотношение риск прибыль рассчитывается путем взвешивания возможного выигрыша по отношению к потенциальным потерям. В примере ниже приведена информация о серии сделок, где только 50% сделок оказались прибыльными, но при этом трейдер все равно получил прибыль в размере 10 тыс. долларов.

Соотношение риск прибыль является лишь частью этой головоломки. Торговая система, которая дает соотношение риска к прибыли 1:2, но количество прибыльных сделок составляет только 2 из 10, то такая стратегия является убыточной. Это подводит нас к важной концепции… математическое ожидание. Эта убыточная стратегия с 2 из 10 прибыльных сделок имеет отрицательное ожидание -400 долларов, в то время как стратегия, показанная в таблице выше, имеет положительное математическое ожидание 1000 долларов. Давайте разберемся в этом детально и рассмотрим уравнение, с помощью которого можно рассчитать математическое ожидание прибыли.

Математическое ожидание

Наверное, вы неоднократно слышали от других трейдеров такую аксиому, как «соотношение риск прибыль должно быть больше, чем 1:2, чтобы получать прибыль в трейдинге» или аналогичную. Реальность такова, что так называемое матожидание стратегии дает вам понимание того, где находится грань в вашей торговой стратегии. Матожидание дает приблизительное значение средней суммы, которую вы можете выиграть или проиграть в сделке.

Матожидание состоит из четырех элементов:

Прибыльные сделки – W%

Убыточные сделки – L%

Средняя прибыль – Ave W

Средний убыток – Ave L

Математическое ожидание торговой стратегии может быть рассчитано по следующей формуле:

Матжидание = (W% * Ave W) – (L% * Ave L)

Так что матожидание в нашем примере серии из 10 сделок составляет:

(0,5*3000) – (0,5*1000) = 1500 – 500 = 1000

Это пример торговой стратегии, которая имеет положительное матожидание. Надеюсь, вы понимаете, что размер выборки из 10 трейдов не является достаточным для проведения анализа. В действительности трейдеры рассматривают сотни сделок для того чтобы получить представление о том, каким образом работает система, а демо торговля является одним из способов сбора данных. Даже эти данные не гарантируют, что в будущем торговля будет повторять исторические данные, но это природа риска. Тем не менее, дневник трейдера дает нам полезную информацию, которую мы можем использовать для расчета прибыльности нашей стратегии.

Вы должны постоянно следить, как работает ваша торговая стратегия и насколько она эффективна. Теперь вы понимаете, что трейдер может иметь убыточных сделок больше 50%, но в то же время он может зарабатывать, так как ему это позволяет его соотношение риска к прибыли в сделке. Рассматривать эффективность своей стратегии можно после того, как вы получите достаточное количество исторических данных, оперируя которыми вы сможете получить самое лучше соотношение риска прибыли для вашей стратегии. Существует и альтернативная точка зрения, которая заключается в том, что при большом количестве положительных сделок можно фиксировать небольшую прибыль, но при условии, что размер средней убыточной сделки также небольшой. Тем не менее, большинство трейдеров не имеет высокого показателя прибыльных сделок, поэтому они должны искать сделки с приемлемым соотношением риска к прибыли.

Математическое ожидание и размер позиции являются двумя важными факторами, от которых зависит успех в трейдинге. Профессиональные трейдеры, как правило, имеют твердое понимание математического ожидания и управления капиталом, которые вместе с дисциплиной и собственными правилами торговли способны принести трейдеру прибыль от торговли на финансовых рынках. Они стремятся постоянно поддерживать положительное матожидание и используют размер позиции, который соответствует их рискам. Если вы торгуете по своей торговой стратегии и не можете получить прибыль, возможно вам нужно перейти на демо счет для того чтобы просмотреть, какое соотношение риск прибыль и какое матожидание у вашей торговой стратегии.

Наберитесь терпения и прочитайте это..

Игра с положительным математическим ожиданием — жизненно важная концепция для всех спекулянтов, это концепция, на которой строится система веры, но сама концепция не может быть построена на вере. Казино не работают на вере. Казино оперирует, управляя своим бизнесом, основываясь на чистой математике. Казино знает, что, в конечном счете, законы рулетки и игры в кости возьмут верх. Поэтому казино не дает игре останавливаться. Казино не против того чтобы подождать, но казино не останавливается и играет круглые сутки, ведь чем дольше вы играете в его игру отрицательного математического ожидания, тем больше организаторы казино уверены, что получат ваши деньги.

Трейдеру необходимо иметь понятие о математическом ожидании. В зависимости от того, у кого математическое преимущество в игре, оно называется либо преимуществом игрока — положительное ожидание, либо преимуществом игорного дома — отрицательное ожидание. Допустим, мы играем с вами в орла-или-решку. Ни у вас, ни у меня нет преимущества у каждого 50% шансов на выигрыш. Но если мы перенесем эту игру в казино, которое снимает 10% с каждого кона, то вы выиграете только 90 центов на каждый проигранный доллар. Это преимущество игорного дома оборачивается для вас как игрока сильным отрицательным математическим ожиданием. И ни одна система контроля, над капиталом, ни одна стратегия не может одолеть игру с отрицательным ожиданием.

В играх с отрицательным математическим ожиданием не имеется никакой схемы управления деньгами (стратегии) которая сделает вас победителем.

Интересная штука рулетка, передовик всех азартных игр, в основу возьмем ее. Итак, казино, крики, шум, эмоции и роскошная показуха, но мы сосредоточимся на рулетке. Давайте рассчитаем математическое ожидание игры в рулетку, если играть только на красное-черное (в трейдинге кстати это лонг или шорт). Итак на рулетке всего 38 игровых полей — 36 цифр (18 красных и 18 черных полей), а также два зеро (возьмем релетку с двумя зеро). Таким образом, вероятность выигрыша при ставке на красное или черное составляет приблизительно 0.45 (18/38). В случае положительного исхода ставки мы удваиваем свою ставку, а в случае неудачи теряем все поставленное. Ах да, в случае выпадения зеро мы так же теряем свои деньги. Отсюда имеем отрицательное математическое ожидание. Данную игру можно назвать невыгодной по причине наличия среди игровых полей двух зеро, при выпадении которых нашу ставку забирает в свою пользу казино. Одна ячейка — это примерно 2,6% колеса рулетки, две ячейки это более 5%, именно такой процент хозяева казино кладут себе в карман в среднем с каждой сделки, так казино медленно выкачивает деньги из клиентов, зарабатывая уже много десятилетий.

Безусловно для казино эта игра с положительным математическим ожиданием, при двух зеро казино получит деньги игрока в двадцати случаях из 38. И чем больше игра будет продолжаться, тем больше казино получит прибыли.

А каково математическое ожидание финансовых игр? Ставки на финансовые инструменты обладают всеми внешними атрибутами азартных игр, финансовые игры на бирже распыляют зеро рулетки на большое количество компонентов вероятности — спрэд, комиссионные бирже, комиссионные брокеру, абоненская плата за пользованием биржевого терминала, плата за перевод средств на счета и по сути 13% налог на будущую прибыль в совокупности являются своеобразными аналогами зеро рулетки
. Это дает основание говорить об отрицательном, изначально неблагоприятном математическом ожидании для игрока (трейдера).

Я хочу что бы вы поняли — Никакой метод управления капиталом, никакая стратегия, не может превратить отрицательное ожидание в положительное.
Это абсолютно верное замечание. Математических доказательств этому утверждению нет. Однако это не означает, что такое не может произойти. Конечно в азартных играх участник может выйти на полосу выигрышей, совпадений и просто прекратить игру, в результате такой человек по сути окажется победителем. Но на долго ли он завяжет с игрой?…

Поэтому единственный случай, когда у вас есть шанс выиграть в долгосрочной перспективе, — это игра с положительным математическим ожиданием
. Думаю, вы можете выиграть как правило при многократном использовании ставки одинакового размера и только при отсутствии верхнего поглощающего барьера
. Азартный игрок, который начинает со 100 долларов, прекратит играть, если его счет вырастит до 101 доллара. Эта верхняя цель (101 доллар) называется поглощающим барьером. Допустим, игрок всегда ставит 1 доллар на красный цвет рулетки где 18 полос красные, 18 полос черные, 2 полосы ноль, при нуле деньги уходят в казино. Таким образом, игра идет при небольшом отрицательном математическом ожидании. У игрока больше шансов увидеть, как его счет вырастет до 101 доллара и игрок прекратит играть, чем то, что его счет уменьшится до нуля, и игроку будет не на что играть. Если игрок будет играть на рулетке снова и снова, то окажется жертвой отрицательного математического ожидания. Если сыграть в такую игру только раз, то аксиома неизбежного банкротства, конечно же, не применима, если сыграть один раз то скажем так сила отрицательного мат. ожидания будет максимально слаба. Различие между отрицательным ожиданием и положительным ожиданием — это различие между жизнью и смертью вашего депозита.

Когда вы понимаете, что игра имеет отрицательное математическое ожидание, то лучшей ставкой будет отсутствие ставки. Помните, что нет стратегии управления деньгами, которая может превратить проигрышную игру в выигрышную
. Допустим вы все же должны сделать ставку в игре с отрицательным ожиданием, то наилучшей стратегией будет «стратегия максимальной смелости»

. Другими словами, вам надо сделать как можно меньше ставок (в противоположность игре с положительным ожиданием, где следует ставить как можно чаще, желательно вообще не выходить из игры). Итак чем больше попыток, тем больше вероятность, что при отрицательном ожидании вы проиграете. Поэтому при отрицательном ожидании меньше возможности для проигрыша, если длина игры укорачивается (то есть когда число попыток приближается к 1). Если вы играете в игру, где есть шанс 49% выиграть 1 доллар и 51% проиграть 1 доллар, то лучше всего сделать только одну попытку. Чем больше ставок вы будете делать, тем больше сила вероятности, что вы проиграете (с вероятностью проигрыша, приближающейся к 100% уверенности, когда игра приближается к бесконечности при отрицательном мат. ожидании).

Организаторы игры, казино — не расскажут трейдеру о математическом ожидании, «они» расскажут трейдеру о возможности выиграть и найдут различные причины для трейдера сделать ставку. Слушая организаторов игры и огромного количества околорыночников которые получают комиссию не рискуя своими деньгами трейдер полагает, что для успешной игры важно проанализировать график, новости, нарисовать черточки по лженауке тех анализа и тем самым найти подходящий момент для открытия позиций и этим якобы повысить надежность своей системы-стратегии (если она есть) и победить рынок. Но правда кроется в том, что не менее 97% людей, пытающихся изобрести системы-стратегии трейдинга, просто пытаются найти идеальный входной сигнал
. Этот входной сигнал бессилен против изначального математически отрицательного ожидания. Фактически трейдеры почти всегда говорят о своих системах, имеющих коэффициент надежности не менее 60%. Но при этом их удивляет, почему они не зарабатывают денег, в долгосрочной перспективе трейдеры теряют деньги! Поймите, даже система с высоким процентом выигрышей при отрицательном математическом ожидании это путь в никуда, лучшее что может сделать трейдер это остановиться на полосе побед и больше не входить в рынок.

Еще такая интересная подробность, допустим вы начинаете игру с одного доллара, выигрываете при первом броске и зарабатываете доллар. При следующем броске вы ставите весь счет (2 доллара), однако на этот раз проигрываете и теряете их. Вы проиграли первоначальную сумму в 1 доллар и 1 доллара прибыли, Дело в том, что если вы используете 100% счета, то выйдете из игры, как только столкнетесь с проигрышем который является неизбежным событием. Из этого вытекает важное правило, если вы все таки начали игру, то играйте одинаковыми ставками, а прибыль забирайте себе. Не входите в рынок большими ставками при отрицательном математическом о

Постоянно краткосрочные трейдеры рассказывают типа Я успешный дэй-трейдер. Вхожу в рынок и выхожу из него по нескольку раз в день. И почти каждый день зарабатываю деньги. Но за один вчерашний день я потерял почти годовую прибыль и очень этим расстроен. Такие ошибки возникают в результате изменения ставки, попадании в ловушку с использованием плечей и эмоциональном трейдинге. Подбор входа, заработок в течении некоторого времени и слив счета в итоге, это судьба подавляющего большинства трейдеров играющих но поле отрицательного мат. ожидания.

Как трейдеры борятся с рынком? Попытки преломить отрицательное математическое ожидание – это одинаковые серии ставок по одинаковым «событиям». Это — классический пример азартной игры, где участники пытаются воспользоваться сериями. Единственный случай, который приводит их к проигрышу при таком подходе, — это когда в серии наблюдается много одинаковых выпадений подряд. Серии, чем более мелкие тем лучше — более эффективны чем слепая игра, тем не менее серии не обеспечивают положительное математическое ожидание.

Все вы наверно слышали про Мартингейл, это усовершенствованная стратегия серий. Тут игрок начинает с минимальной ставки, обычно с 1 доллара, и после каждого проигрыша удваивает ставку. Теоретически он рано или поздно должен выиграть и тогда получит обратно все проигранное плюс один доллар. После этого он опять может сделать минимальную ставку и начать сначала. Базовая концепция метода Мартингейл строится на том, что по мере уменьшения суммы в результате убытков возможность компенсации потерь либо увеличивается, либо остается прежней. Это популярный тип управления капиталом для игроков в азартные игры. Система удвоения выглядит беспроигрышной до того момента, когда вы сообразите, что длинная полоса неудач разорит любого игрока, сколь бы богат он ни был. Игрок, начавший с 1 доллара и проигравший 46 раз, должен поставить 47-ю ставку в 70 триллионов долларов
, а это больше, чем стоимость всего мира (примерно 50 триллионов). Ясно, что намного раньше у него кончатся деньги или он упрется в ограничения его депозита или казино. Считаю что система удвоения бесполезна, если у вас отрицательное математическое ожидание и слишком рискованна для того что бы использовать эту систему на свои деньги.

В бесконечном продолжении игра с отрицательным математическим ожиданием является бесперспективной. Но при ограниченном числе серий вероятность выйти победителем есть. Либо нужно искать мат. положительную игру где возможная прибыль будет больше, чем возможный убыток на 1 ставку.

Большинство трейдеров гибнут от одной из двух пуль это незнание и эмоции. Профаны играют по наитию, ввязываясь в сделки, которые им — вследствие отрицательного математического ожидания — следовало бы пропустить. Если они выживают, то, подучившись, начинают разрабатывать системы поумнее. Затем, уверившись в себе, они высовывают голову из окопа — и попадают под вторую пулю. От самонадеянности они ставят слишком много на одну сделку и вылетают из игры после короткой вереницы потерь. Эмоциональность оказывает самое непосредственное влияние на финансовый результат, получаемый инвестором — в большей степени игроком
от финансовых спекуляций. И чем эмоциональней поведение человека, тем значительней будет отклонение математического ожидания финансовых результатов его торговли от реальности. Для азартных игр, обладающих отрицательным математическим ожиданием финансовые результаты, полученные под влиянием эмоций, это похороны депозита.

Как правило, любые игры с денежным выигрышем, будь это лотерея, ставки на ипподроме и в букмекерских конторах, игральные автоматы и т.п., являются играми с отрицательным математическим ожиданием для игрока. Казино не просто так организуют для вас эти игры. Особенность среднестатистического трейдера состоит в том, что он не способен просчитать все мелочи которые ожидают его в будущем, потому и будущее его игры предрешено.

Хочу что бы вы поняли — участие в любой из игр с отрицательным математическим ожиданием нельзя расценивать как источник стабильного дохода.

Что делать? Каждый решает для себя сам, я нашел математически положительное ожидание на биржевых опционах, но даже там постоянные изменения правил игры брокерами и биржами приводят к сильному уменьшению итогового дохода. Размазанный ноль рулетки на спредах, поборах, брокеров и других мелочах жестоко уменьшает итоговую прибыль, но именно с использованием опционов и только можно выстроить мат+ систему в этом «казино 21 века».

Ищите математически положительное ожидание любыми способами!

Думаю так, ключ к зарабатыванию денег на финансовом рынке состоит в том, чтобы иметь систему с высоким положительным математическим ожиданием, используя эту систему крайне важно использовать изначально установленый размер позиции, работать строго по правилам и многократно и как можно дольше раз продолжать игру и зарабатывать борясь с выходками организаторов этого «казино».

В
большинстве случаев математическое
ожидание еще не достаточно характеризует
случайную величину. На практике
встречаются случайные величины, имеющие
одинаковые математические ожидания,
однако принимающие резко различающиеся
значения. У одних из этих величин
отклонения значений от математического
ожидания небольшие, а для других,
наоборот, значительны, т.е. для одних
рассеивание значений случайной величины
вокруг математического ожидания мало,
а для других оно велико.

Например,
пусть случайные величины X
и Y
заданы следующими законами распределения:

Математические
ожидания этих случайных величин одинаковы
и равны нулю. Однако характер их
распределения их различный. Случайная
величина X
принимает значения, мало отличающиеся
от математического ожидания, а случайная
величина Y
– значения, значительно отличаются от
математического ожидания.

Приведенные
рассуждения и пример свидетельствую о
целесообразности введения такой
характеристики случайной величины,
которая оценивала бы меру рассеивания
значений случайной величины вокруг ее
математического ожидания, тем более
что на практике часто приходится
оценивать такое рассеивание. Например,
артиллеристам необходимо знать как
кучно лягут снаряды вблизи цели, по
которой ведется стрельба.

На
первый взгляд может показаться, что для
оценки рассеяния проще всего вычислить
все возможные значения отклонения
случайной величины и затем найти их
среднее значение. Однако такой путь
ничего не дает, т.к. среднее значение
отклонение для любой случайной величины
равно нулю. Это объясняется тем, что
возможные значения X–M[X]
могут иметь как положительные, так и
отрицательные знаки.

Избежать
изменения знаков отклонений x
i

M[X]
можно, если заменить их абсолютными
значениями или возвести в квадрат.
Замена отклонений их абсолютными
величинами нецелесообразно, т.к. действия
с абсолютными величинами, как правило,
вызывают затруднения. Поэтому следует
использовать величину (X–M[X]) 2
(точнее, ее среднее значение) для
характеристики рассеивания значений
случайной величины.

Определение.

Дисперсией
(рассеянием) случайной величины называют
математическое ожидание квадрата
отклонения случайной величины от ее
математического ожидания:

Законы
распределения вероятностей случайной
величины X
и (X–M[X]) 2
одинаковы. Пусть M[X]m
,
тогда дисперсия ДСВ будет иметь вид

,
(5.5)

дисперсия НСВ

дисперсия

.
(5.6)

Из
определения следует, что дисперсия
случайной величины есть величина не
случайная (постоянная). Тогда формулу
для дисперсии можно преобразовать
следующим образом

Таким образом,

.
(5.7)

Это есть основная
формула для вычисления дисперсии.

Случайная
величина и ее математическое ожидание
имеют одну и ту же размерность, но
дисперсия имеет размерность квадрата
случайной величины. недостатка можно
избежать если воспользоваться величиной,
равной квадратному корню из дисперсии:

.
(5.8)

Эта
случайная величина называется средним
квадратичным отклонением


случайной величиной.

Пример
5.4.
ДСВ
X
задана следующим законом распределения:

Решение

.
Способ 1.

Способ 2.

Пример
5.5.
НСВ
X
задана следующей плотностью распределения:

Найти
дисперсию D[X]
двумя способами и среднее квадратичное
отклонение.

Решение

.
Способ 1.

Способ 2.

,

Среднее квадратичное
отклонение

Отметим
некоторые свойства дисперсии.

Свойство


1.
Дисперсия
постоянной величины равно нулю:

Действительно,
т.к. M[С]=C,
то D[C]=M[С–M(С)] 2 =M[С–С] 2 =M=0.
Это свойство очевидно, т.к. постоянная
величина принимает только одно значение,
следовательно, рассеяние рассеяния
вокруг математического ожидания нет.

Свойство


2.
Постоянный
множитель можно выносить за знак
дисперсии, возводя его в квадрат:

D
= C 2
D[X].

Действительно,
т.к. постоянный множитель можно выносить
за знак математического ожидания, то

Свойство


3. Дисперсия
суммы двух независимых случайных величин
равно сумме дисперсий этих величин:

D
= D[X]+
D[Y].

Действительно,
учитывая свойства математического
ожидания, получим

Свойство


4.
Дисперсия
разности двух независимых случайных
величин равно сумме их дисперсий:

D
= D[X]
+ D[Y].

Действительно,
в силу свойства 3 D
= D[X]
+ D[–Y].
В соответствие со свойством 2, получим

Ранее было введено
понятие отклонения случайной величины
от ее математического ожидания. Эту
случайную величину

Иногда
называют центрированной
случайной величиной

.
Выше было показано (свойство 5), что
математическое ожидание случайной
величины равно нулю. Найдем дисперсию
центрированной случайной величины. На
основании свойств дисперсии, получим

Таким
образом, дисперсия
случайной величины
X

и центрированной случайной величины

X–M[X]
равны
между собой.

Иногда
бывает удобно использовать безразмерные
центрированные случайные величины.
Разделим величину X–M[X]
на среднее квадратичное отклонениеsимеющее ту же размерность. Вновь
полученную случайную величину называютстандартной случайной
величиной

:

.
(5.9)

Стандартная
случайная величина обладает следующими
свойствами: 1) M[Z]=0,
2) D[X]=1.


Всем привет, мои дорогие посетители и читатели! Сегодня мы с вами поговорим про положительное математическое ожидание, и почему оно имеет высокую важность. На самом деле, многие трейдеры не уделяют этому вопросу должного внимания, и делают это очень даже зря.

На мой взгляд, положительное математическое ожидание имеет просто огромную важность. Конечно, речи я вести не буду про , потому как там положительным ожиданием даже не пахнет. Дело в том, что бинарный контракт изначально ограничен по времени, величине прибыли и убытка. Кроме того, средняя прибыльность по ставкам составляет порядка 75%. То есть, вы рискуете 100% от вашей ставки, чтобы получить только 75%.

ПОЛОЖИТЕЛЬНОЕ МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ НА БО

Таким образом, не нужно быть математическим гением, дабы понять, что даже при соотношении прибыльных к убыточным сделкам 50 на 50, вы все равно будете проигрывать. Соответственно, у вас в рамках бинарных опционов есть два концептуальных пути.

Первый путь состоит в том, что вы работаете на точность, то есть, делаете очень редкие и осознанные сделки, поддерживаете количество ваших прибыльных сделок на уровне не менее 70%, и спокойно понемногу зарабатываете, соблюдая положительный настрой.

Второй концептуальный путь состоит в том, что вы обильно используете . Доходность от этого выше, но выше и потенциальные риски. По сему, если вы будете использовать Мартин бездумно, то ждите беды – вы сольете депозит.

НЕТ ПОВЕСТИ ПЕЧАЛЬНЕЕ НА СВЕТЕ

Вообще, все рассказы о том, что торговать на бинарных опционах невероятно просто – это все иллюзорность и не более того. Эти россказни распространяются только с целью того, чтобы привлечь как можно больше целевой аудитории. Понятное дело, что хомячки, одурманенные крутыми рассказами о легкости этой сферы, идут сюда и, естественно, просаживают тут деньги.

Таких историй просто море, я думаю, что вы и сами слышали о таких историях. Различные форумы просто переполняются душераздирающими рассказами о том, как люди потеряли деньги, что рынок говно, соответственно, нечто не положительное, а совсем наоборот. и прочее. Если говорить про бинарные опционы, то, да, зарабатывать тут можно. Но при этом нельзя забывать, что опционы являются невероятно рискованным инструментом со всеми вытекающими последствиями.

ПОЛОЖИТЕЛЬНОЕ МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ НА ФОРЕКС

Для лучшего понимания партнера.

Я вам скажу, что от этого никто не застрахован, и даже опытные трейдеры время от времени терпят серьезные потери. В частности, нет никаких гарантий, что в один прекрасный момент времени вы не попадете в череду убыточных сделок, и вот тут вас, как раз, спасет математическое ожидание.

ИЗУЧИМ КОЛИЧЕСТВО ПРИБЫЛЬНЫХ СДЕЛОК К УБЫТОЧНЫМ 50/50

Вообще, вот представим на секунду, что у вас на долгосрочном отрезке соотношение прибыльным к убыточным сделкам находится на уровне 50 на 50. Давайте рассмотрим такое соотношение на примере небольшой выборки, состоящей из 10 сделок. Вы должны понимать, что в рамках этой выборки ваше соотношение сделок может распределяться различным образом. Посмотрите пример, чтобы понять, к чему я веду:

  • — — — — — + + + + +
  • — + — + — + — + — +
  • — — + — — + + — — +
  • + + + — — + — — + +

Грубо говоря, к чему эти наскальные рисунки. А вот это как раз вариации выборки, и таких вариантов может быть очень много. По сути, все эти 4 примера – это возможные варианты выборки в рамках соотношения сделок 50 на 50.

Вы никогда не знаете, насколько длинной будет цепочка прибылей или убытков в рамках этой выборки. Но, что вы можете сделать – это четко следовать своей . Давайте будем откровенными, если бы мы получили 5 убытков подряд, вызвало бы это у нас эмоции? Заставило бы это нас начать нарушать свою систему?

Я уверен, что большинстве случаев это было бы так! Ну, одна сделка, ну две сделки воспринимались бы еще как-то. Но вот третья и последующая четвертая убыточная сделка подряд уже выбила бы нас из колеи. А вот этого делать как раз нельзя, у вас есть система и ее надо придерживаться, во что бы то ни стало! Самое главное, чтобы ваше математическое ожидание было положительным!

ПОЛОЖИТЕЛЬНОЕ МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ — ЭТО ВАЖНО

Если ваша средняя прибыль превышает средний убыток, то вам нечего и париться. Если не верите, то давайте посчитаем! К примеру, вы взяли математическое ожидание 1 к 4. При этом, ваш стоп по сделке 10 пунктов, а тейк, соответственно, 40 пунктов. При этом, у вас только 30% прибыльных сделок, вы не ослышались, только 30%. За выборку возьмем 100 сделок, считаем:

Итого, как вы видите, даже при подавляющем большинстве убыточных сделок при таком математическом ожидании положительном вы бы все равно получали прибыль. Соответственно, как вы видите, в техническом плане все просто! У вас есть четкая система, есть четкие ММ, есть математическое ожидание и все, вы на лошадке.

ПОБЕДА И ПОРАЖЕНИЕ — ЭТО СТАТИСТИКА

Но тут как раз в дело вступает та самая пресловутая психология. Понятное дело, что пересиживать убытки морально очень сложно! Если вы думаете, что опытные трейдеры не подвластны этому, то вы ошибаетесь. Но истинный профессионал осознает, что убыток, ровным счетом, как и прибыль – это не конкретная личностная победа или поражение, а это в первую очередь статистика и ничего более.

Не нужно воспринимать убытки и прибыли в качестве побед или поражений. Хотя мыслить нужно положительно! Все это является закономерным исходом вашей работы. При этом, даже убыточная сделка не говорит о том, что вы что-то сделали неправильно. Если сделка оказалась убыточной, но была проведена четко по системе, то это нормально и в этом нет ничего такого плохого и ужасного!

Самое главное, сохраняйте , положительный настрой, следуйте своей системе и будет вам счастье. Кроме того, никогда не нужно спешить, и это очень важно! Каждый ваш вход в рынок должен быть четким и обоснованным. Кроме того, не забывайте, что положительное математическое ожидание является тем инструментом, который позволит себя уверенно чувствовать даже в периоды убытков.

Каждый сам для себя должен решить, какое математическое ожидания должно быть. Но на мой взгляд, необходимо брать не менее 1 к 2, но тут, опять же, решать вам!

01.02.2018

Математическое ожидание. Просто о сложном. Азы трейдинга.

При размещении ставок любого типа всегда существует определенная вероятность получения прибыли и риск потерпеть неудачу. Положительный исход сделки, и риск потерять деньги неразрывно связаны с математическим ожиданием. В данной статье мы подробно остановимся на этих двух аспектах трейдинга.

Математическое ожидание
— при количестве выборок или количества её измерений (иногда говорят — количества испытаний) стремящимся к бесконечности.

Смысл в том, что положительное математическое ожидание ведет к положительной (с повышением прибыли) торговле, а нулевое или отрицательное математическое ожидание означают, что не нужно торговать вообще.

Что бы было легче разобраться в данном вопросе, давайте рассмотрим понятие математического ожидания при игре в рулетку. Пример с рулеткой очень прост для понимания.

Рулетка
— (Крупье запускает шарик в противоположную сторону вращения колеса, с того номера на какой шарик упал в предыдущий раз, который должен упасть в одну из пронумерованных ячеек, сделав не менее трёх полных оборотов по колесу.

Ячейки, пронумерованные числами от 1 до 36, окрашены в чёрный и красный цвета. Номера расположены не по порядку, хотя цвета ячеек строго чередуются, начиная с 1 — красного цвета. Ячейка, обозначенная цифрой 0, окрашена в зелёный цвет и называется зеро

Рулетка- это игра с отрицательным математическим ожиданием. Все из-за поля зеро.«0», которое не является ни черным, ни красным.

Поскольку (в общем случае) если не применять изменение ставки, игрок теряет 1$ за каждые 37 вращений колеса (при ставке 1$ за раз), что приводит к линейному убытку на уровне -2,7%, который увеличивается по мере роста числа ставок (в среднем).

Конечно у игрока на интервале, к примеру, в 1000 игр, могут случаться серии побед, и человек может начать ошибочно считать, что он может зарабатывать, обыгрывая казино, так и серии поражений. Серия побед в таком случае может увеличить капитал игрока на большее значение, чем у него было изначально, в таком случае, если у игрока была 1000$, после 10 игр по 1$ у него в среднем должно остаться 973$. Но если в таком сценарии у игрока окажется денег меньше или больше, мы будем называть такую разницу между текущим капиталом дисперсией. Зарабатывать на игре в рулетку можно только в рамках дисперсии.Если игрок продолжит следовать этой стратегии, в конечном счете человек останется без денег, а казино заработает.

Второй пример — знаменитые бинарные опционы. Вам дают сделать ставку, при удачном исходе вы забираете аж 90 процентов сверху от своей ставки, а при неудачном- теряете все 100. И дальше владельцам БО достаточно просто ждать, рынок и отрицательное мат ожидание сделают свое дело. А временная дисперсия даст надежду трейдеру бинарных опционов, что на данном рынке можно зарабатывать. Но это временно.

В чем же плюс криптовалютного трейдинга (как и трейдинга на фондовом рынке) ?

Человек сам может создать для себя систему. Сам может ограничить свой риск, и стараться забрать с рынка максимум возможной прибыли. (Причем если со вторым ситуация довольно спорная, то риск нужно контролировать очень четко.)

Чтобы понимать в каком направлении вас ведёт ваша стратегия необходимо ведение статистики. Трейдер должен знать:

  1. Количество своих трейдов. Чем больше количество трейдов по заданной стратегии, тем точнее будет математическое ожидание
  2. Частота удачных входов. (Вероятность) (R)
  3. Свой профит по каждой положительной сделке.
  4. Смещение (коэффициент прибыльных сделок) (B)
  5. Средний размер вашей ставки (стоп ордер) (S)

Математическое ожидание (Е) = B * R – (1 – B) = B * (1 + R) –1

Чтобы примерно узнать свой итоговый заработок или убыток на счете (EE), к примеру, на дистанции в 1000 трейдов, воспользуемся формулой.

Где N — количество трейдов, которые мы планируем исполнить.

Для примера возмем начальные данные:

стоп лосс — 30 долларов.

профит — 100 долларов.

Количество сделок 30

Математическое ожидание отрицательное только при соотношении прибыльных и убыточных сделок (R) 20%/80% или хуже В остальных случаях положительное.

Пусть теперь профит будет 150. Тогда отрицательным мат ожидание будет при соотношении 16%/84%. Или ниже.

Вывод.

Что с этим делать? Начните вести статистику, если еще не начинали. Проверьте свои трейды, определите Ваше мат ожидание. Найдите то, что можно улучшить (количество верных входов, добор профита, урезание убытков)

Разработанно Expertcoin

Скальпинг на Форексе когда-то был горячей темой среди инвесторов. Похоже, тема остается актуальной поскольку та же самая тема стала вновь актуальной для криптовалюты. Для многих новых инвесторов криптовалютный скальпинг может быть новым, но им занимаются уже довольно давно. Понятие скальпинг Термин «скальпинг» используется для описания внутридневной торговли. Этот стиль инвестирования подходит тем, кто хочет получить…

Прогнозирование рынков, используя фундаментальный анализ становится немного сложнее, но его достаточно легко понять. Многие из вас уже слышали об этом методе. Однако для большинства начинающих трейдеров фундаментальный анализ является очень сложным методом прогнозирования. У фундаментального анализа долгая история, поскольку он используется на финансовых рынках уже более 100 лет. Вы можете применить его ко всем финансовым…

Существует множество методов, которые инвесторы и трейдеры могут использовать для поиска прибыльных позиций. От простых значений на экране до более сложных систем, таких как CANSLIM. Эти методы можно использовать для поиска акций и других активов для покупки. Здесь вся надежда на то, что метод инвестора поможет направить их к большой прибыли и уберет эмоции с…

Ральф Нельсон Эллиот был профессионалом, занимая различные бухгалтерские и деловые должности, пока не заболел в Центральной Америке, что привело к нежелательному выходу на пенсию в возрасте 58 лет. Теперь у него было большое количество времени и Эллиот начал изучать 75-летнее поведение фондового рынка в начале 1900-х годов, чтобы определить годовые, ежемесячные, еженедельные, ежедневные, часовые или…

Представьте, что вы потеряли более $660,000 всего за 30 секунд! В январе 2014 года один профессиональный трейдер сумел сделать то же самое, торгуя акциями HSBC, благодаря «толстым пальцам» и тому что не установил верхний ценовой лимит на свою сделку. В этом случае трейдер, вероятно, мог бы избежать потерь, разместив лимитный ордер вместо рыночного, тем самым…

Если вы планируете заняться инвестициями для того, чтобы обеспечить себя после выхода на пенсию, то единственная вещь о которой вы беспокоитесь — это хватит ли вам в итоге денег для ваших нужд в долгосрочной перспективе. Пенсионное планирование включает в себя расчеты, чтобы понять, насколько и как быстро ваши деньги будут расти со временем. Сложный процент…

Каждый трейдер сталкивается с проскальзываниями цены при торговле, будь то торговля акциями, торговля на форекс или торговля фьючерсами. Проскальзывание — это когда вы получаете цену, отличную от ожидаемой на входе или выходе из сделки. Если бид-аск спрэд акции составляет 49,36 доллара к 49,37, и вы размещаете рыночный ордер на покупку 500 акций, то вы ожидаете,…

Мы расскажем вам о различных типах торговли акциями, чтобы вы могли решить, что и как анализировать. Вопрос в том, каким типом биржевого трейдера вы хотите стать. Это зависит от вашего понимания «себя» и ваших знаний о различных типах торговли. Различные виды торговли требуют различные типы личности, количества времени и капиталовложений. Поэтому, вы должны решить, что…

Стаканы на бирже

В мире крипто-трейдинга важным аспектом являются динамические отношения между покупателями и продавцами. За ними всегда можно наблюдать в так называемых «стаканах». Стакан — это инструмент, который визуализирует в реальном времени список еще невыполненных ордеров для определенного актива. Стаканы показывают интерес покупателей и продавцов, что показывает спрос и предложение. Хотя все стаканы служат для одной и…

a b c d e f g h i j k l m n o p q r s t u v w x y z